
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

High-Speed Tracking with
Kernelized Correlation Filters

João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista

Abstract—The core component of most modern trackers is a discriminative classifier, tasked with distinguishing between the target
and the surrounding environment. To cope with natural image changes, this classifier is typically trained with translated and scaled
sample patches. Such sets of samples are riddled with redundancies – any overlapping pixels are constrained to be the same. Based
on this simple observation, we propose an analytic model for datasets of thousands of translated patches. By showing that the resulting
data matrix is circulant, we can diagonalize it with the Discrete Fourier Transform, reducing both storage and computation by several
orders of magnitude. Interestingly, for linear regression our formulation is equivalent to a correlation filter, used by some of the fastest
competitive trackers. For kernel regression, however, we derive a new Kernelized Correlation Filter (KCF), that unlike other kernel
algorithms has the exact same complexity as its linear counterpart. Building on it, we also propose a fast multi-channel extension of
linear correlation filters, via a linear kernel, which we call Dual Correlation Filter (DCF). Both KCF and DCF outperform top-ranking
trackers such as Struck or TLD on a 50 videos benchmark, despite running at hundreds of frames-per-second, and being implemented
in a few lines of code (Algorithm 1). To encourage further developments, our tracking framework was made open-source.

Index Terms—Visual tracking, circulant matrices, discrete Fourier transform, kernel methods, ridge regression, correlation filters.

F

1 INTRODUCTION

A RGUABLY one of the biggest breakthroughs in recent
visual tracking research was the widespread adoption

of discriminative learning methods. The task of tracking, a
crucial component of many computer vision systems, can
be naturally specified as an online learning problem [1], [2].
Given an initial image patch containing the target, the goal
is to learn a classifier to discriminate between its appearance
and that of the environment. This classifier can be evaluated
exhaustively at many locations, in order to detect it in
subsequent frames. Of course, each new detection provides
a new image patch that can be used to update the model.

It is tempting to focus on characterizing the object of
interest – the positive samples for the classifier. However,
a core tenet of discriminative methods is to give as much
importance, or more, to the relevant environment – the
negative samples. The most commonly used negative sam-
ples are image patches from different locations and scales,
reflecting the prior knowledge that the classifier will be
evaluated under those conditions.

An extremely challenging factor is the virtually unlim-
ited amount of negative samples that can be obtained from
an image. Due to the time-sensitive nature of tracking,
modern trackers walk a fine line between incorporating
as many samples as possible and keeping computational
demand low. It is common practice to randomly choose only
a few samples each frame [3], [4], [5], [6], [7].

Although the reasons for doing so are understandable,
we argue that undersampling negatives is the main factor
inhibiting performance in tracking. In this paper, we de-
velop tools to analytically incorporate thousands of samples

• The authors are with the Institute of Systems and Robotics, University of
Coimbra.
E-mail: {henriques,ruicaseiro,pedromartins,batista}@isr.uc.pt

at different relative translations, without iterating over them
explicitly. This is made possible by the discovery that, in the
Fourier domain, some learning algorithms actually become
easier as we add more samples, if we use a specific model for
translations.

These analytical tools, namely circulant matrices, pro-
vide a useful bridge between popular learning algorithms
and classical signal processing. The implication is that we
are able to propose a tracker based on Kernel Ridge Re-
gression [8] that does not suffer from the “curse of ker-
nelization”, which is its larger asymptotic complexity, and
even exhibits lower complexity than unstructured linear
regression. Instead, it can be seen as a kernelized version
of a linear correlation filter, which forms the basis for the
fastest trackers available [9], [10]. We leverage the power-
ful kernel trick at the same computational complexity as
linear correlation filters. Our framework easily incorporates
multiple feature channels, and by using a linear kernel we
show a fast extension of linear correlation filters to the multi-
channel case.

2 RELATED WORK

2.1 On tracking-by-detection

A comprehensive review of tracking-by-detection is outside
the scope of this article, but we refer the interested reader
to two excellent and very recent surveys [1], [2]. The most
popular approach is to use a discriminative appearance
model [3], [4], [5], [6]. It consists of training a classifier
online, inspired by statistical machine learning methods, to
predict the presence or absence of the target in an image
patch. This classifier is then tested on many candidate
patches to find the most likely location. Alternatively, the
position can also be predicted directly [7]. Regression with

ar
X

iv
:1

40
4.

75
84

v3
 [

cs
.C

V
]

 5
 N

ov
 2

01
4

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Kernelized Correlation Filter (proposed) TLD Struck

Figure 1: Qualitative results for the proposed Kernelized Correlation Filter (KCF), compared with the top-performing Struck and
TLD. Best viewed on a high-resolution screen. The chosen kernel is Gaussian, on HOG features. These snapshots were taken at
the midpoints of the 50 videos of a recent benchmark [11]. Missing trackers are denoted by an “x”. KCF outperforms both Struck
and TLD, despite its minimal implementation and running at 172 FPS (see Algorithm 1, and Table 1).

class labels can be seen as classification, so we use the two
terms interchangeably.

We will discuss some relevant trackers before focusing
on the literature that is more directly related to our an-
alytical methods. Canonical examples of the tracking-by-
detection paradigm include those based on Support Vec-
tor Machines (SVM) [12], Random Forest classifiers [6], or
boosting variants [13], [5]. All the mentioned algorithms had
to be adapted for online learning, in order to be useful for
tracking. Zhang et al. [3] propose a projection to a fixed
random basis, to train a Naive Bayes classifier, inspired
by compressive sensing techniques. Aiming to predict the
target’s location directly, instead of its presence in a given
image patch, Hare et al. [7] employed a Structured Output
SVM and Gaussian kernels, based on a large number of
image features. Examples of non-discriminative trackers
include the work of Wu et al. [14], who formulate track-
ing as a sequence of image alignment objectives, and of
Sevilla-Lara and Learned-Miller [15], who propose a strong
appearance descriptor based on distribution fields. Another
discriminative approach by Kalal et al. [4] uses a set of
structural constraints to guide the sampling process of a
boosting classifier. Finally, Bolme et al. [9] employ classical
signal processing analysis to derive fast correlation filters.
We will discuss these last two works in more detail shortly.

2.2 On sample translations and correlation filtering
Recall that our goal is to learn and detect over translated
image patches efficiently. Unlike our approach, most at-
tempts so far have focused on trying to weed out irrelevant
image patches. On the detection side, it is possible to use
branch-and-bound to find the maximum of a classifier’s
response while avoiding unpromising candidate patches
[16]. Unfortunately, in the worst-case the algorithm may
still have to iterate over all patches. A related method finds
the most similar patches of a pair of images efficiently [17],
but is not directly translated to our setting. Though it does

not preclude an exhaustive search, a notable optimization
is to use a fast but inaccurate classifier to select promising
patches, and only apply the full, slower classifier on those
[18], [19].

On the training side, Kalal et al. [4] propose using
structural constraints to select relevant sample patches from
each new image. This approach is relatively expensive,
limiting the features that can be used, and requires careful
tuning of the structural heuristics. A popular and related
method, though it is mainly used in offline detector learn-
ing, is hard-negative mining [20]. It consists of running
an initial detector on a pool of images, and selecting any
wrong detections as samples for re-training. Even though
both approaches reduce the number of training samples, a
major drawback is that the candidate patches have to be
considered exhaustively, by running a detector.

The initial motivation for our line of research was the
recent success of correlation filters in tracking [9], [10]. Cor-
relation filters have proved to be competitive with far more
complicated approaches, but using only a fraction of the
computational power, at hundreds of frames-per-second.
They take advantage of the fact that the convolution of
two patches (loosely, their dot-product at different relative
translations) is equivalent to an element-wise product in the
Fourier domain. Thus, by formulating their objective in the
Fourier domain, they can specify the desired output of a
linear classifier for several translations, or image shifts, at
once.

A Fourier domain approach can be very efficient, and
has several decades of research in signal processing to draw
from [21]. Unfortunately, it can also be extremely limiting.
We would like to simultaneously leverage more recent ad-
vances in computer vision, such as more powerful features,
large-margin classifiers or kernel methods [22], [20], [23].

A few studies go in that direction, and attempt to apply
kernel methods to correlation filters [24], [25], [26], [27]. In
these works, a distinction must be drawn between two types

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

of objective functions: those that do not consider the power
spectrum or image translations, such as Synthetic Discrim-
inant Function (SDF) filters [25], [26], and those that do,
such as Minimum Average Correlation Energy [28], Optimal
Trade-Off [27] and Minimum Output Sum of Squared Error
(MOSSE) filters [9]. Since the spatial structure can effectively
be ignored, the former are easier to kernelize, and Kernel
SDF filters have been proposed [26], [27], [25]. However,
lacking a clearer relationship between translated images,
non-linear kernels and the Fourier domain, applying the
kernel trick to other filters has proven much more difficult
[25], [24], with some proposals requiring significantly higher
computation times and imposing strong limits on the num-
ber of image shifts that can be considered [24].

For us, this hinted that a deeper connection between
translated image patches and training algorithms was
needed, in order to overcome the limitations of direct
Fourier domain formulations.

2.3 Subsequent work
Since the initial version of this work [29], an interesting
time-domain variant of the proposed cyclic shift model has
been used very successfully for video event retrieval [30].
Generalizations of linear correlation filters to multiple chan-
nels have also been proposed [31], [32], [33], some of which
building on our initial work. This allows them to leverage
more modern features (e.g. Histogram of Oriented Gradi-
ents – HOG). A generalization to other linear algorithms,
such as Support Vector Regression, was also proposed [31].
We must point out that all of these works target off-line
training, and thus rely on slower solvers [31], [32], [33]. In
contrast, we focus on fast element-wise operations, which
are more suitable for real-time tracking, even with the kernel
trick.

3 CONTRIBUTIONS

A preliminary version of this work was presented earlier
[29]. It demonstrated, for the first time, the connection
between Ridge Regression with cyclically shifted samples
and classical correlation filters. This enabled fast learning
with O (n log n) Fast Fourier Transforms instead of expen-
sive matrix algebra. The first Kernelized Correlation Filter
was also proposed, though limited to a single channel.
Additionally, it proposed closed-form solutions to compute
kernels at all cyclic shifts. These carried the sameO (n log n)
computational cost, and were derived for radial basis and
dot-product kernels.

The present work adds to the initial version in signifi-
cant ways. All the original results were re-derived using a
much simpler diagonalization technique (Sections 4-6). We
extend the original work to deal with multiple channels,
which allows the use of state-of-the-art features that give an
important boost to performance (Section 7). Considerable
new analysis and intuitive explanations are added to the
initial results. We also extend the original experiments from
12 to 50 videos, and add a new variant of the Kernelized
Correlation Filter (KCF) tracker based on Histogram of
Oriented Gradients (HOG) features instead of raw pixels.
Via a linear kernel, we additionally propose a linear multi-
channel filter with very low computational complexity, that

almost matches the performance of non-linear kernels. We
name it Dual Correlation Filter (DCF), and show how it
is related to a set of recent, more expensive multi-channel
filters [31]. Experimentally, we demonstrate that the KCF
already performs better than a linear filter, without any
feature extraction. With HOG features, both the linear DCF
and non-linear KCF outperform by a large margin top-
ranking trackers, such as Struck [7] or Track-Learn-Detect
(TLD) [4], while comfortably running at hundreds of frames-
per-second.

4 BUILDING BLOCKS

In this section, we propose an analytical model for image
patches extracted at different translations, and work out the
impact on a linear regression algorithm. We will show a
natural underlying connection to classical correlation filters.
The tools we develop will allow us to study more compli-
cated algorithms in Sections 5-7.

4.1 Linear regression

We will focus on Ridge Regression, since it admits a simple
closed-form solution, and can achieve performance that is
close to more sophisticated methods, such as Support Vector
Machines [8]. The goal of training is to find a function
f(z) = wT z that minimizes the squared error over samples
xi and their regression targets yi,

min
w

∑
i

(f(xi)− yi)2 + λ ‖w‖2 . (1)

The λ is a regularization parameter that controls overfit-
ting, as in the SVM. As mentioned earlier, the minimizer has
a closed-form, which is given by [8]

w =
(
XTX + λI

)−1
XTy. (2)

where the data matrix X has one sample per row xi, and
each element of y is a regression target yi. I is an identity
matrix.

Starting in Section 4.4, we will have to work in the
Fourier domain, where quantities are usually complex-
valued. They are not harder to deal with, as long as we
use the complex version of Eq. 2 instead,

w =
(
XHX + λI

)−1
XHy, (3)

where XH is the Hermitian transpose, i.e., XH = (X∗)
T ,

and X∗ is the complex-conjugate of X . For real numbers,
Eq. 3 reduces to Eq. 2.

In general, a large system of linear equations must be
solved to compute the solution, which can become pro-
hibitive in a real-time setting. Over the next paragraphs we
will see a special case of xi that bypasses this limitation.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

+30 +15 Base sample -15 -30

Figure 2: Examples of vertical cyclic shifts of a base sample.
Our Fourier domain formulation allows us to train a tracker
with all possible cyclic shifts of a base sample, both vertical and
horizontal, without iterating them explicitly. Artifacts from the
wrapped-around edges can be seen (top of the left-most image),
but are mitigated by the cosine window and padding.

4.2 Cyclic shifts

For notational simplicity, we will focus on single-channel,
one-dimensional signals. These results generalize to multi-
channel, two-dimensional images in a straightforward way
(Section 7).

Consider an n × 1 vector representing a patch with
the object of interest, denoted x. We will refer to it as
the base sample. Our goal is to train a classifier with both
the base sample (a positive example) and several virtual
samples obtained by translating it (which serve as negative
examples). We can model one-dimensional translations of
this vector by a cyclic shift operator, which is the permutation
matrix

P =

0 0 0 · · · 1

1 0 0 · · · 0

0 1 0 · · · 0
...

...
. . .

. . .
...

0 0 · · · 1 0

 . (4)

The product Px = [xn, x1, x2, . . . , xn−1]
T shifts x by

one element, modeling a small translation. We can chain
u shifts to achieve a larger translation by using the matrix
power Pux. A negative u will shift in the reverse direction.
A 1D signal translated horizontally with this model is illus-
trated in Fig. 3, and an example for a 2D image is shown in
Fig. 2.

The attentive reader will notice that the last element
wraps around, inducing some distortion relative to a true
translation. However, this undesirable property can be mit-
igated by appropriate padding and windowing (Section
A.1). The fact that a large percentage of the elements of a
signal are still modeled correctly, even for relatively large
translations (see Fig. 2), explains the observation that cyclic
shifts work well in practice.

Due to the cyclic property, we get the same signal x
periodically every n shifts. This means that the full set of
shifted signals is obtained with

{Pux |u = 0, . . . n− 1} . (5)

Again due to the cyclic property, we can equivalently
view the first half of this set as shifts in the positive direc-
tion, and the second half as shifts in the negative direction.

Figure 3: Illustration of a circulant matrix. The rows are cyclic
shifts of a vector image, or its translations in 1D. The same
properties carry over to circulant matrices containing 2D im-
ages.

4.3 Circulant matrices
To compute a regression with shifted samples, we can use
the set of Eq. 5 as the rows of a data matrix X :

X = C(x) =

x1 x2 x3 · · · xn
xn x1 x2 · · · xn−1
xn−1 xn x1 · · · xn−2

...
...

...
. . .

...
x2 x3 x4 · · · x1

 . (6)

An illustration of the resulting pattern is given in Fig. 3.
What we have just arrived at is a circulant matrix, which has
several intriguing properties [34], [35]. Notice that the pat-
tern is deterministic, and fully specified by the generating
vector x, which is the first row.

What is perhaps most amazing and useful is the fact
that all circulant matrices are made diagonal by the Discrete
Fourier Transform (DFT), regardless of the generating vector
x [34]. This can be expressed as

X = F diag (x̂) FH , (7)

where F is a constant matrix that does not depend on x,
and x̂ denotes the DFT of the generating vector, x̂ = F (x).
From now on, we will always use a hat ˆ as shorthand for
the DFT of a vector.

The constant matrix F is known as the DFT matrix, and
is the unique matrix that computes the DFT of any input
vector, as F (z) =

√
nFz. This is possible because the DFT

is a linear operation.
Eq. 7 expresses the eigendecomposition of a general

circulant matrix. The shared, deterministic eigenvectors F
lie at the root of many uncommon features, such as commu-
tativity or closed-form inversion.

4.4 Putting it all together
We can now apply this new knowledge to simplify the linear
regression in Eq. 3, when the training data is composed
of cyclic shifts. Being able to work solely with diagonal
matrices is very appealing, because all operations can be
done element-wise on their diagonal elements.

Take the term XHX , which can be seen as a non-
centered covariance matrix. Replacing Eq. 7 in it,

XHX = F diag (x̂∗) FHF diag (x̂) FH . (8)

Since diagonal matrices are symmetric, taking the Her-
mitian transpose only left behind a complex-conjugate, x̂∗.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Additionally, we can eliminate the factor FHF = I . This
property is the unitarity of F and can be canceled out in
many expressions. We are left with

XHX = F diag (x̂∗) diag (x̂) FH . (9)

Because operations on diagonal matrices are element-
wise, we can define the element-wise product as � and
obtain

XHX = F diag (x̂∗ � x̂) FH . (10)

An interesting aspect is that the vector in brackets is
known as the auto-correlation of the signal x (in the Fourier
domain, also known as the power spectrum [21]). In classical
signal processing, it contains the variance of a time-varying
process for different time lags, or in our case, space.

The above steps summarize the general approach taken
in diagonalizing expressions with circulant matrices. Ap-
plying them recursively to the full expression for linear
regression (Eq. 3), we can put most quantities inside the
diagonal,

ŵ = diag
(

x̂∗

x̂∗ � x̂+ λ

)
ŷ, (11)

or better yet,

ŵ =
x̂∗ � ŷ

x̂∗ � x̂+ λ
. (12)

The fraction denotes element-wise division. We can eas-
ily recover w in the spatial domain with the Inverse DFT,
which has the same cost as a forward DFT. The detailed
steps of the recursive diagonalization that yields Eq. 12 are
given in Appendix A.5.

At this point we just found an unexpected formula from
classical signal processing – the solution is a regularized
correlation filter [9], [21].

Before exploring this relation further, we must high-
light the computational efficiency of Eq. 12, compared to
the prevalent method of extracting patches explicitly and
solving a general regression problem. For example, Ridge
Regression has a cost of O

(
n3
)
, bound by the matrix in-

version and products1. On the other hand, all operations in
Eq. 12 are element-wise (O (n)), except for the DFT, which
bounds the cost at a nearly-linear O (n log n). For typical
data sizes, this reduces storage and computation by several
orders of magnitude.

4.5 Relationship to correlation filters
Correlation filters have been a part of signal processing since
the 80’s, with solutions to a myriad of objective functions
in the Fourier domain [21], [28]. Recently, they made a
reappearance as MOSSE filters [9], which have shown re-
markable performance in tracking, despite their simplicity
and high FPS rate.

1. We remark that the complexity of training algorithms is usually
reported in terms of the number of samples n, disregarding the number
of features m. Since in our case m = n (X is square), we conflate the
two quantities. For comparison, the fastest SVM solvers have “linear”
complexity in the samplesO (mn), but under the same conditions m =
n would actually exhibit quadratic complexity, O

(
n2

)
.

The solution to these filters looks like Eq. 12 (see Ap-
pendix A.2), but with two crucial differences. First, MOSSE
filters are derived from an objective function specifically
formulated in the Fourier domain. Second, the λ regularizer
is added in an ad-hoc way, to avoid division-by-zero. The
derivation we showed above adds considerable insight, by
specifying the starting point as Ridge Regression with cyclic
shifts, and arriving at the same solution.

Circulant matrices allow us to enrich the toolset put for-
ward by classical signal processing and modern correlation
filters, and apply the Fourier trick to new algorithms. Over
the next section we will see one such instance, in training
non-linear filters.

5 NON-LINEAR REGRESSION

One way to allow more powerful, non-linear regression
functions f(z) is with the “kernel trick” [23]. The most
attractive quality is that the optimization problem is still
linear, albeit in a different set of variables (the dual space).
On the downside, evaluating f(z) typically grows in com-
plexity with the number of samples.

Using our new analysis tools, however, we will show
that it is possible to overcome this limitation, and obtain
non-linear filters that are as fast as linear correlation filters,
both to train and evaluate.

5.1 Kernel trick – brief overview
This section will briefly review the kernel trick, and define
the relevant notation.

Mapping the inputs of a linear problem to a non-linear
feature-space ϕ(x) with the kernel trick consists of:

1) Expressing the solution w as a linear combination
of the samples:

w =
∑
i

αiϕ(xi) (13)

The variables under optimization are thus α, in-
stead of w. This alternative representation α is said
to be in the dual space, as opposed to the primal space
w (Representer Theorem [23, p. 89]).

1) Writing the algorithm in terms of dot-products
ϕT (x)ϕ(x′) = κ(x,x′), which are computed using
the kernel function κ (e.g., Gaussian or Polynomial).

The dot-products between all pairs of samples are usu-
ally stored in a n× n kernel matrix K , with elements

Kij = κ(xi,xj). (14)

The power of the kernel trick comes from the implicit
use of a high-dimensional feature space ϕ(x), without ever
instantiating a vector in that space. Unfortunately, this is
also its greatest weakness, since the regression function’s
complexity grows with the number of samples,

f(z) = wT z =

n∑
i=1

αiκ(z,xi). (15)

In the coming sections we will show how most draw-
backs of the kernel trick can be avoided, assuming circulant
data.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

5.2 Fast kernel regression

The solution to the kernelized version of Ridge Regression
is given by [8]

α = (K + λI)
−1

y, (16)

where K is the kernel matrix and α is the vector of coeffi-
cients αi, that represent the solution in the dual space.

Now, if we can prove that K is circulant for datasets of
cyclic shifts, we can diagonalize Eq. 16 and obtain a fast
solution as for the linear case. This would seem to be intu-
itively true, but does not hold in general. The arbitrary non-
linear mapping ϕ(x) gives us no guarantee of preserving
any sort of structure. However, we can impose one condition
that will allow K to be circulant. It turns out to be fairly
broad, and apply to most useful kernels.

Theorem 1. Given circulant data C (x), the corresponding
kernel matrix K is circulant if the kernel function satisfies
κ(x,x′) = κ(Mx,Mx′), for any permutation matrix M .

For a proof, see Appendix A.2. What this means is that,
for a kernel to preserve the circulant structure, it must treat
all dimensions of the data equally. Fortunately, this includes
most useful kernels.

Example 2. The following kernels satisfy Theorem 1:

• Radial Basis Function kernels – e.g., Gaussian.
• Dot-product kernels – e.g., linear, polynomial.
• Additive kernels – e.g., intersection, χ2 and Hellinger

kernels [36].
• Exponentiated additive kernels.

Checking this fact is easy, since reordering the dimen-
sions of x and x′ simultaneously does not change κ(x,x′)
for these kernels. This applies to any kernel that combines
dimensions through a commutative operation, such as sum,
product, min and max.

Knowing which kernels we can use to make K circulant,
it is possible to diagonalize Eq. 16 as in the linear case,
obtaining

α̂ =
ŷ

k̂xx + λ
, (17)

where kxx is the first row of the kernel matrix K = C(kxx),
and again a hat ˆ denotes the DFT of a vector. A detailed
derivation is in Appendix A.3.

To better understand the role of kxx, we found it useful
to define a more general kernel correlation. The kernel corre-
lation of two arbitrary vectors, x and x′, is the vector kxx′

with elements

kxx
′

i = κ(x′, P i−1x). (18)

In words, it contains the kernel evaluated for different
relative shifts of the two arguments. Then k̂xx is the kernel
correlation of x with itself, in the Fourier domain. We can
refer to it as the kernel auto-correlation, in analogy with the
linear case.

This analogy can be taken further. Since a kernel is
equivalent to a dot-product in a high-dimensional space
ϕ(·), another way to view Eq. 18 is

kxx
′

i = ϕT (x′)ϕ(P i−1x), (19)

which is the cross-correlation of x and x′ in the high-
dimensional space ϕ(·).

Notice how we only need to compute and operate on
the kernel auto-correlation, an n × 1 vector, which grows
linearly with the number of samples. This is contrary to the
conventional wisdom on kernel methods, which requires
computing an n × n kernel matrix, scaling quadratically
with the samples. Our knowledge of the exact structure of
K allowed us to do better than a generic algorithm.

Finding the optimal α is not the only problem that can
be accelerated, due to the ubiquity of translated patches in a
tracking-by-detection setting. Over the next paragraphs we
will investigate the effect of the cyclic shift model on the
detection phase, and even in computing kernel correlations.

5.3 Fast detection

It is rarely the case that we want to evaluate the regression
function f(z) for one image patch in isolation. To detect
the object of interest, we typically wish to evaluate f(z) on
several image locations, i.e., for several candidate patches.
These patches can be modeled by cyclic shifts.

Denote by Kz the (asymmetric) kernel matrix between
all training samples and all candidate patches. Since the
samples and patches are cyclic shifts of base sample x and
base patch z, respectively, each element of Kz is given by
κ(P i−1z, P j−1x). It is easy to verify that this kernel matrix
satisfies Theorem 1, and is circulant for appropriate kernels.

Similarly to Section 5.2, we only need the first row to
define the kernel matrix:

Kz = C(kxz), (20)

where kxz is the kernel correlation of x and z, as defined
before.

From Eq. 15, we can compute the regression function for
all candidate patches with

f(z) = (Kz)
T
α. (21)

Notice that f(z) is a vector, containing the output for all
cyclic shifts of z, i.e., the full detection response. To compute
Eq. 21 efficiently, we diagonalize it to obtain

f̂(z) = k̂xz � α̂. (22)

Intuitively, evaluating f(z) at all locations can be seen as
a spatial filtering operation over the kernel values kxz. Each
f(z) is a linear combination of the neighboring kernel values
from kxz, weighted by the learned coefficients α. Since this
is a filtering operation, it can be formulated more efficiently
in the Fourier domain.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

6 FAST KERNEL CORRELATION

Even though we have found faster algorithms for training
and detection, they still rely on computing one kernel cor-
relation each (kxx and kxz, respectively). Recall that kernel
correlation consists of computing the kernel for all relative
shifts of two input vectors. This represents the last standing
computational bottleneck, as a naive evaluation of n kernels
for signals of size n will have quadratic complexity. How-
ever, using the cyclic shift model will allow us to efficiently
exploit the redundancies in this expensive computation.

6.1 Dot-product and polynomial kernels
Dot-product kernels have the form κ(x,x′) = g(xTx′), for
some function g. Then, kxx′

has elements

kxx
′

i = κ(x′, P i−1x) = g
(
x′TP i−1x

)
. (23)

Let g also work element-wise on any input vector. This
way we can write Eq. 23 in vector form

kxx′
= g(C(x)x′) . (24)

This makes it an easy target for diagonalization, yielding

kxx′
= g
(
F−1 (x̂∗ � x̂′)

)
, (25)

where F−1 denotes the Inverse DFT.
In particular, for a polynomial kernel κ(x,x′) =(

xTx′ + a
)b

,

kxx′
=
(
F−1 (x̂∗ � x̂′) + a

)b
. (26)

Then, computing the kernel correlation for these partic-
ular kernels can be done using only a few DFT/IDFT and
element-wise operations, in O (n log n) time.

6.2 Radial Basis Function and Gaussian kernels
RBF kernels have the form κ(x,x′) = h(‖x− x′‖2), for
some function h. The elements of kxx′

are

kxx
′

i = κ(x′, P i−1x) = h
(∥∥x′ − P i−1x∥∥2) (27)

We will show (Eq. 29) that this is actually a special case
of a dot-product kernel. We only have to expand the norm,

kxx
′

i = h
(
‖x‖2 + ‖x′‖2 − 2x′TP i−1x

)
. (28)

The permutation P i−1 does not affect the norm of x
due to Parseval’s Theorem [21]. Since ‖x‖2 and ‖x′‖2 are
constant w.r.t. i, Eq. 28 has the same form as a dot-product
kernel (Eq. 23). Leveraging the result from the previous
section,

kxx′
= h

(
‖x‖2 + ‖x′‖2 − 2F−1 (x̂∗ � x̂′)

)
. (29)

As a particularly useful special case, for a Gaussian
kernel κ(x,x′) = exp

(
− 1
σ2 ‖x− x′‖2

)
we get

kxx′
= exp

(
− 1

σ2

(
‖x‖2 + ‖x′‖2 − 2F−1 (x̂∗ � x̂′)

))
.

(30)
As before, we can compute the full kernel correlation in

only O (n log n) time.

6.3 Other kernels
The approach from the preceding two sections depends on
the kernel value being unchanged by unitary transforma-
tions, such as the DFT. This does not hold in general for
other kernels, e.g. intersection kernel. We can still use the
fast training and detection results (Sections 5.2 and 5.3), but
kernel correlation must be evaluated by a more expensive
sliding window method.

7 MULTIPLE CHANNELS

In this section, we will see that working in the dual has the
advantage of allowing multiple channels (such as the ori-
entation bins of a HOG descriptor [20]) by simply summing
over them in the Fourier domain. This characteristic extends
to the linear case, simplifying the recently-proposed multi-
channel correlation filters [31], [32], [33] considerably, under
specific conditions.

7.1 General case
To deal with multiple channels, in this section we will
assume that a vector x concatenates the individual vectors
for C channels (e.g. 31 gradient orientation bins for a HOG
variant [20]), as x = [x1, . . . ,xC].

Notice that all kernels studied in Section 6 are based
on either dot-products or norms of the arguments. A dot-
product can be computed by simply summing the indi-
vidual dot-products for each channel. By linearity of the
DFT, this allows us to sum the result for each channel in
the Fourier domain. As a concrete example, we can apply
this reasoning to the Gaussian kernel, obtaining the multi-
channel analogue of Eq. 30,

kxx′
= exp

(
− 1

σ2

(
‖x‖2 + ‖x′‖2 − 2F−1 (

∑
c x̂
∗
c � x̂′c)

))
.

(31)
It is worth emphasizing that the integration of multi-

ple channels does not result in a more difficult inference
problem – we merely have to sum over the channels when
computing kernel correlation.

7.2 Linear kernel
For a linear kernel κ(x,x′) = xTx′, the multi-channel
extension from the previous section simply yields

kxx′
= F−1 (

∑
c x̂
∗
c � x̂′c) . (32)

We named it the Dual Correlation Filter (DCF). This filter
is linear, but trained in the dual space α. We will discuss the
advantages over other multi-channel filters shortly.

A recent extension of linear correlation filters to multiple
channels was discovered independently by three groups
[31], [32], [33]. They allow much faster training times than
unstructured algorithms, by decomposing the problem into
one linear system for each DFT frequency, in the case of
Ridge Regression. Henriques et al. [31] additionally gener-
alize the decomposition to other training algorithms.

However, Eq. 32 suggests that, by working in the dual
with a linear kernel, we can train a linear classifier with
multiple channels, but using only element-wise operations.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

This may be unexpected at first, since those works require
more expensive matrix inversions [31], [32], [33].

We resolve this discrepancy by pointing out that this
is only possible because we only consider a single base
sample x. In this case, the kernel matrix K = XXT is
n × n, regardless of the number of features or channels.
It relates the n cyclic shifts of the base sample, and can
be diagonalized by the n basis of the DFT. Since K is
fully diagonal we can use solely element-wise operations.
However, if we consider two base samples, K becomes
2n × 2n and the n DFT basis are no longer enough to
fully diagonalize it. This incomplete diagonalization (block-
diagonalization) requires more expensive operations to deal
with, which were proposed in those works.

With an interestingly symmetric argument, training with
multiple base samples and a single channel can be done in
the primal, with only element-wise operations (Appendix
A.6). This follows by applying the same reasoning to the
non-centered covariance matrix XTX , instead of XXT . In
this case we obtain the original MOSSE filter [9].

In conclusion, for fast element-wise operations we can
choose multiple channels (in the dual, obtaining the DCF) or
multiple base samples (in the primal, obtaining the MOSSE),
but not both at the same time. This has an important impact
on time-critical applications, such as tracking. The general
case [31] is much more expensive and suitable mostly for
offline training applications.

8 EXPERIMENTS

8.1 Tracking pipeline
We implemented in Matlab two simple trackers based on
the proposed Kernelized Correlation Filter (KCF), using a
Gaussian kernel, and Dual Correlation Filter (DCF), using
a linear kernel. We do not report results for a polynomial
kernel as they are virtually identical to those for the Gaus-
sian kernel, and require more parameters. We tested two
further variants: one that works directly on the raw pixel
values, and another that works on HOG descriptors with a
cell size of 4 pixels, in particular Felzenszwalb’s variant [20],
[22]. Note that our linear DCF is equivalent to MOSSE [9]
in the limiting case of a single channel (raw pixels), but it
has the advantage of also supporting multiple channels (e.g.
HOG). Our tracker requires few parameters, and we report
the values that we used, fixed for all videos, in Table 2.

The bulk of the functionality of the KCF is presented
as Matlab code in Algorithm 1. Unlike the earlier version
of this work [29], it is prepared to deal with multiple
channels, as the 3rd dimension of the input arrays. It im-
plements 3 functions: train (Eq. 17), detect (Eq. 22), and
kernel_correlation (Eq. 31), which is used by the first
two functions.

The pipeline for the tracker is intentionally simple, and
does not include any heuristics for failure detection or mo-
tion modeling. In the first frame, we train a model with the
image patch at the initial position of the target. This patch is
larger than the target, to provide some context. For each new
frame, we detect over the patch at the previous position,
and the target position is updated to the one that yielded
the maximum value. Finally, we train a new model at the
new position, and linearly interpolate the obtained values of

Algorithm 1 : Matlab code, with a Gaussian kernel.
Multiple channels (third dimension of image patches) are sup-
ported. It is possible to further reduce the number of FFT calls.
Implementation with GUI available at:
http://www.isr.uc.pt/~henriques/

Inputs
•x: training image patch, m× n× c
•y: regression target, Gaussian-shaped, m× n
•z: test image patch, m× n× c

Output
•responses: detection score for each location, m× n

function alphaf = train(x, y, sigma, lambda)
k = kernel_correlation(x, x, sigma);
alphaf = fft2(y) ./ (fft2(k) + lambda);

end

function responses = detect(alphaf, x, z, sigma)
k = kernel_correlation(z, x, sigma);
responses = real(ifft2(alphaf .* fft2(k)));

end

function k = kernel_correlation(x1, x2, sigma)
c = ifft2(sum(conj(fft2(x1)) .* fft2(x2), 3));
d = x1(:)’*x1(:) + x2(:)’*x2(:) - 2 * c;
k = exp(-1 / sigma^2 * abs(d) / numel(d));

end

α and x with the ones from the previous frame, to provide
the tracker with some memory.

8.2 Evaluation

We put our tracker to the test by using a recent benchmark
that includes 50 video sequences [11] (see Fig. 1). This
dataset collects many videos used in previous works, so we
avoid the danger of overfitting to a small subset.

For the performance criteria, we did not choose average
location error or other measures that are averaged over
frames, since they impose an arbitrary penalty on lost
trackers that depends on chance factors (i.e., the position
where the track was lost), making them not comparable. A
similar alternative is bounding box overlap, which has the
disadvantage of heavily penalizing trackers that do not track
across scale, even if the target position is otherwise tracked
perfectly.

An increasingly popular alternative, which we chose for
our evaluation, is the precision curve [11], [5], [29]. A frame
may be considered correctly tracked if the predicted target
center is within a distance threshold of ground truth. Preci-
sion curves simply show the percentage of correctly tracked
frames for a range of distance thresholds. Notice that by
plotting the precision for all thresholds, no parameters are
required. This makes the curves unambiguous and easy to
interpret. A higher precision at low thresholds means the
tracker is more accurate, while a lost target will prevent it
from achieving perfect precision for a very large threshold
range. When a representative precision score is needed, the
chosen threshold is 20 pixels, as done in previous works
[11], [5], [29].

http://www.isr.uc.pt/~henriques/

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

KCF on HOG [0.732]

DCF on HOG [0.728]

Struck [0.656]

TLD [0.608]

KCF on raw pixels [0.560]

MIL [0.475]

ORIA [0.457]

DCF on raw pixels [0.451]

MOSSE [0.431]

CT [0.406]

Figure 4: Precision plot for all 50 sequences. The proposed
trackers (bold) outperform state-of-the-art systems, such as
TLD and Struck, which are more complicated to implement
and much slower (see Table 1). Best viewed in color.

8.3 Experiments on the full dataset
We start by summarizing the results over all videos in Table
1 and Fig. 4. For comparison, we also report results for
several other systems [7], [4], [9], [5], [14], [3], including
some of the most resilient trackers available – namely, Struck
and TLD. Unlike our simplistic implementation (Algorithm
1), these trackers contain numerous engineering improve-
ments. Struck operates on many different kinds of features
and a growing pool of support vectors. TLD is specifically
geared towards re-detection, using a set of structural rules
with many parameters.

Despite this asymmetry, our Kernelized Correlation Fil-
ter (KCF) can already reach competitive performance by
operating on raw pixels alone, as can be seen in Fig. 4. In this
setting, the rich implicit features induced by the Gaussian
kernel yield a distinct advantage over the proposed Dual
Correlation Filter (DCF).

We remark that the DCF with single-channel features
(raw pixels) is theoretically equivalent to a MOSSE filter
[9]. For a direct comparison, we include the results for the
authors’ MOSSE tracker [9] in Fig. 4. The performance of
both is very close, showing that any particular differences
in their implementations do not seem to matter much.
However, the kernelized algorithm we propose (KCF) does
yield a noticeable increase in performance.

Replacing pixels with HOG features allows the KCF and
DCF to surpass even TLD and Struck, by a relatively large
margin (Fig. 4). This suggests that the most crucial factor
for high performance, compared to other trackers that use
similar features, is the efficient incorporation of thousands
of negative samples from the target’s environment, which
they do with very little overhead.

Timing. As mentioned earlier, the overall complexity of our
closed-form solutions is O (n log n), resulting in its high
speed (Table 1). The speed of the tracker is directly related
to the size of the tracked region. This is an important
factor when comparing trackers based on correlation filters.

Algorithm Feature
Mean

precision
(20 px)

Mean
FPS

Proposed

KCF
HOG

73.2% 172
DCF 72.8% 292
KCF Raw

pixels
56.0% 154

DCF 45.1% 278

Other
algorithms

Struck [7] 65.6% 20
TLD [4] 60.8% 28

MOSSE [9] 43.1% 615
MIL [5] 47.5% 38

ORIA [14] 45.7% 9
CT [3] 40.6% 64

Table 1: Summary of experimental results on the 50 videos
dataset. The reported quantities are averaged over all videos.
Reported speeds include feature computation (e.g. HOG).

MOSSE [9] tracks a region that has the same support as
the target object, while our implementation tracks a region
that is 2.5 times larger (116x170 on average). Reducing the
tracked region would allow us to approach their FPS of 615
(Table 1), but we found that it hurts performance, especially
for the kernel variants. Another interesting observation from
Table 1 is that operating on 31 HOG features per spatial cell
can be slightly faster than operating on raw pixels, even
though we take the overhead of computing HOG features
into account. Since each 4x4 pixels cell is represented by
a single HOG descriptor, the smaller-sized DFTs counter-
balance the cost of iterating over feature channels. Taking
advantage of all 4 cores of a desktop computer, KCF/DCF
take less than 2 minutes to process all 50 videos (∼29,000
frames).

8.4 Experiments with sequence attributes

The videos in the benchmark dataset [11] are annotated with
attributes, which describe the challenges that a tracker will
face in each sequence – e.g., illumination changes or occlu-
sions. These attributes are useful for diagnosing and char-
acterizing the behavior of trackers in such a large dataset,
without having to analyze each individual video. We report
results for 4 attributes in Figure 5: non-rigid deformations,
occlusions, out-of-view target, and background clutter.

The robustness of the HOG variants of our tracker
regarding non-rigid deformations and occlusions is not
surprising, since these features are known to be highly
discriminative [20]. However, the KCF on raw pixels alone
still fares almost as well as Struck and TLD, with the kernel
making up for the features’ shortcomings.

One challenge for the system we implemented is an out-
of-view target, due to the lack of a failure recovery mecha-
nism. TLD performs better than most other trackers in this
case, which illustrates its focus on re-detection and failure
recovery. Such engineering improvements could probably
benefit our trackers, but the fact that KCF/DCF can still
outperform TLD shows that they are not a decisive factor.

Background clutter severely affects almost all trackers,
except for the proposed ones, and to a lesser degree, Struck.
For our tracker variants, this is explained by the implicit in-
clusion of thousands of negative samples around the tracked
object. Since in this case even the raw pixel variants of our

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

Deformation (19 sequences)

KCF on HOG [0.740]

DCF on HOG [0.740]

Struck [0.521]

TLD [0.512]

KCF on raw pixels [0.480]

MIL [0.455]

CT [0.435]

MOSSE [0.367]

ORIA [0.355]

DCF on raw pixels [0.350]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

Occlusion (29 sequences)

KCF on HOG [0.749]

DCF on HOG [0.726]

Struck [0.564]

TLD [0.563]

KCF on raw pixels [0.505]

ORIA [0.435]

MIL [0.427]

CT [0.412]

DCF on raw pixels [0.410]

MOSSE [0.397]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

c
is

io
n

Out of view (6 sequences)

KCF on HOG [0.650]

DCF on HOG [0.632]

TLD [0.576]

Struck [0.539]

MIL [0.393]

KCF on raw pixels [0.358]

CT [0.336]

ORIA [0.315]

DCF on raw pixels [0.261]

MOSSE [0.226]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

Background clutter (21 sequences)

KCF on HOG [0.733]

DCF on HOG [0.719]

Struck [0.585]

KCF on raw pixels [0.503]

MIL [0.456]

TLD [0.428]

DCF on raw pixels [0.407]

ORIA [0.389]

CT [0.339]

MOSSE [0.339]

Figure 5: Precision plot for sequences with attributes: occlusion, non-rigid deformation, out-of-view target, and background
clutter. The HOG variants of the proposed trackers (bold) are the most resilient to all of these nuisances. Best viewed in color.

tracker have a performance very close to optimal, while
TLD, CT, ORIA and MIL show degraded performance, we
conjecture that this is caused by their undersampling of
negatives.

We also report results for other attributes in Fig. 7.
Generally, the proposed trackers are the most robust to 6
of the 7 challenges, except for low resolution, which affects
equally all trackers but Struck.

9 CONCLUSIONS AND FUTURE WORK

In this work, we demonstrated that it is possible to analyti-
cally model natural image translations, showing that under
some conditions the resulting data and kernel matrices be-
come circulant. Their diagonalization by the DFT provides a
general blueprint for creating fast algorithms that deal with
translations. We have applied this blueprint to linear and
kernel ridge regression, obtaining state-of-the-art trackers
that run at hundreds of FPS and can be implemented with
only a few lines of code. Extensions of our basic approach
seem likely to be useful in other problems. Since the first
version of this work, circulant data has been exploited
successfully for other algorithms in detection [31] and video
event retrieval [30]. An interesting direction for further work
is to relax the assumption of periodic boundaries, which
may improve performance. Many useful algorithms may
also be obtained from the study of other objective functions
with circulant data, including classical filters such as SDF
or MACE [25], [26], and more robust loss functions than the

squared loss. We also hope to generalize this framework to
other operators, such as affine transformations or non-rigid
deformations.

ACKNOWLEDGMENT

The authors acknowledge support by the FCT
project PTDC/EEA-CRO/122812/2010, grants
SFRH/BD75459/2010, SFRH/BD74152/2010, and
SFRH/BPD/90200/2012.

APPENDIX A

A.1 Implementation details

As is standard with correlation filters, the input patches (ei-
ther raw pixels or extracted feature channels) are weighted
by a cosine window, which smoothly removes discontinu-
ities at the image boundaries caused by the cyclic assump-
tion [9], [21]. The tracked region has 2.5 times the size of
the target, to provide some context and additional negative
samples.

Recall that the training samples consist of shifts of a base
sample, so we must specify a regression target for each one
in y. The regression targets y simply follow a Gaussian
function, which takes a value of 1 for a centered target,
and smoothly decays to 0 for any other shifts, according
to the spatial bandwidth s. Gaussian targets are smoother

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

KCF/DCF parameters With raw pixels With HOG
Feature bandwidth σ 0.2 0.5

Adaptation rate 0.075 0.02
Spatial bandwidth s

√
mn/10

Regularization λ 10−4

Table 2: Parameters used in all experiments. In this table, n and
m refer to the width and height of the target, measured in pixels
or HOG cells.

than binary labels, and have the benefit of reducing ringing
artifacts in the Fourier domain [21].

A subtle issue is determining which element of y is the
regression target for the centered sample, on which we will
center the Gaussian function. Although intuitively it may
seem to be the middle of the output plane (Fig. 6-a), it turns
out that the correct choice is the top-left element (Fig. 6-b).
The explanation is that, after computing a cross-correlation
between two images in the Fourier domain and converting
back to the spatial domain, it is the top-left element of the
result that corresponds to a shift of zero [21]. Of course, since
we always deal with cyclic signals, the peak of the Gaussian
function must wrap around from the top-left corner to the
other corners, as can be seen in Fig. 6-b. Placing the Gaussian
peak in the middle of the regression target is common
in some filter implementations, and leads the correlation
output to be unnecessarily shifted by half a window, which
must be corrected post-hoc2.

Another common source of error is the fact that most
implementations of the Fast Fourier Transform3 do not
compute the unitary DFT. This means that the L2 norm of
the signals is not preserved, unless the output is corrected
by a constant factor. With some abuse of notation, we can
say that the unitary DFT may be computed as

FU (x) = fft2(x) / sqrt(m ∗ n), (33)

where the input x has size m × n, and similarly for the
inverse DFT,

F−1U (x) = ifft2(x) ∗ sqrt(m ∗ n). (34)

A.2 Proof of Theorem 1
Under the theorem’s assumption that κ(x,x′) =
κ(Mx,Mx′), for any permutation matrix M , then

Kij = κ(P ix, P jx) (35)

= κ(P−iP ix, P−iP jx). (36)

Using known properties of permutation matrices, this
reduces to

Kij = κ(x, P j−ix). (37)

By the cyclic nature of P , it repeats every nth power, i.e.
Pn = P 0. As such, Eq. 37 is equivalent to

2. This is usually done by switching the quadrants of the output, e.g.
with the Matlab built-in function fftshift. It has the same effect as
shifting Fig. 6-b to look like Fig. 6-a.

3. For example Matlab, NumPy, Octave and the FFTW library.

(a) (b)

Figure 6: Regression targets y, following a Gaussian function
with spatial bandwidth s (white indicates a value of 1, black a
value of 0). (a) Placing the peak in the middle will unnecessarily
cause the detection output to be shifted by half a window
(discussed in Section A.1). (b) Placing the peak at the top-left
element (and wrapping around) correctly centers the detection
output.

Kij = κ(x, P (j−i) mod n x), (38)

where mod is the modulus operation (remainder of division
by n).

We now use the fact the elements of a circulant matrix
X = C(x) (Eq. 6) satisfy

Xij = x((j−i) mod n)+1, (39)

that is, a matrix is circulant if its elements only depend
on (j − i) mod n. It is easy to check that this condition is
satisfied by Eq. 6, and in fact it is often used as the definition
of a circulant matrix [34].

Because Kij also depends on (j − i) mod n, we must
conclude that K is circulant as well, finishing our proof.

A.3 Kernel Ridge Regression with Circulant data
This section shows a more detailed derivation of Eq. 17. We
start by replacing K = C(kxx) in the formula for Kernel
Ridge Regression, Eq. 16, and diagonalizing it

α = (C(kxx) + λI)
−1

y (40)

=
(
Fdiag

(
k̂xx

)
FH + λI

)−1
y. (41)

By simple linear algebra, and the unitarity of F (FFH =
I),

α =
(
Fdiag

(
k̂xx

)
FH + λFIFH

)−1
y (42)

= Fdiag
(
k̂xx + λ

)−1
FHy, (43)

which is equivalent to

FHα = diag
(
k̂xx + λ

)−1
FHy. (44)

Since for any vector Fz = ẑ, we have

α̂∗ = diag
(

1

k̂xx + λ

)
ŷ∗. (45)

Finally, because the product of a diagonal matrix and a
vector is simply their element-wise product,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

α̂∗ =
ŷ∗

k̂xx + λ
. (46)

A.4 Derivation of fast detection formula

To diagonalize Eq. 21, we use the same properties as in the
previous section. We have

f(z) = (C (kxz))
T
α (47)

=
(
Fdiag

(
k̂xz
)
FH
)T

α (48)

= FHdiag
(
k̂xz
)
Fα (49)

which is equivalent to

F f(z) = diag
(
k̂xz
)
Fα. (50)

Replicating the same final steps from the previous sec-
tion,

f̂(z) = k̂xz � α̂. (51)

A.5 Linear Ridge Regression with Circulant data

This is a more detailed version of the steps from Section 4.4.
It is very similar to the kernel case. We begin by replacing
Eq. 10 in the formula for Ridge Regression, Eq. 3.

w =
(
Fdiag (x̂∗ � x̂)FH + λI

)−1
XHy (52)

By simple algebra, and the unitarity of F , we have

w =
(
Fdiag (x̂∗ � x̂)FH + λFHIF

)−1
XHy (53)

=
(
Fdiag (x̂∗ � x̂+ λ)

−1
FH
)
XHy (54)

= Fdiag (x̂∗ � x̂+ λ)
−1
FHFdiag (x̂)FHy (55)

= Fdiag
(

x̂

x̂∗ � x̂+ λ

)
FHy. (56)

Then, this is equivalent to

Fw = diag
(

x̂∗

x̂∗ � x̂+ λ

)
Fy, (57)

and since for any vector Fz = ẑ,

ŵ = diag
(

x̂∗

x̂∗ � x̂+ λ

)
ŷ. (58)

We may go one step further, since the product of a
diagonal matrix and a vector is just their element-wise
product.

ŵ =
x̂∗ � ŷ

x̂∗ � x̂+ λ
(59)

A.6 MOSSE filter
The only difference between Eq. 12 and the MOSSE filter [9]
is that the latter minimizes the error over (cyclic shifts of)
multiple base samples xi, while Eq. 12 is defined for a single
base sample x. This was done for clarity of presentation, and
the general case is easily derived. Note also that MOSSE
does not support multiple channels, which we do through
our dual formulation.

The cyclic shifts of each base sample xi can be expressed
in a circulant matrix Xi. Then, replacing the data matrix

X ′ =

X1

X2

...

 in Eq. 3 results in

w =
∑
j

(∑
i

XH
i Xi + λI

)−1
XH
j y, (60)

by direct application of the rule for products of block matri-
ces. Factoring the bracketed expression,

w =

(∑
i

XH
i Xi + λI

)−1(∑
i

XH
i

)
y. (61)

Eq. 61 looks exactly like Eq. 3, except for the sums. It
is then trivial to follow the same steps as in Section 4.4 to
diagonalize it, and obtain the filter equation

ŵ =

∑
i x̂
∗
i � ŷ∑

i x̂
∗
i � x̂i + λ

. (62)

REFERENCES

[1] A. Smeulders, D. Chu, R. Cucchiara, S. Calderara, A. Dehghan,
and M. Shah, “Visual tracking: an experimental survey,” TPAMI,
2013.

[2] H. Yang, L. Shao, F. Zheng, L. Wang, and Z. Song, “Recent ad-
vances and trends in visual tracking: A review,” Neurocomputing,
vol. 74, no. 18, pp. 3823–3831, Nov. 2011.

[3] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time compressive
tracking,” in ECCV, 2012.

[4] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-
detection,” TPAMI, 2012.

[5] B. Babenko, M. Yang, and S. Belongie, “Robust object tracking with
online multiple instance learning,” TPAMI, 2011.

[6] A. Saffari, C. Leistner, J. Santner, M. Godec, and H. Bischof,
“On-line random forests,” in 3rd IEEE ICCV Workshop on On-line
Computer Vision, 2009.

[7] S. Hare, A. Saffari, and P. Torr, “Struck: Structured output tracking
with kernels,” in ICCV, 2011.

[8] R. Rifkin, G. Yeo, and T. Poggio, “Regularized least-squares clas-
sification,” Nato Science Series Sub Series III Computer and Systems
Sciences, vol. 190, pp. 131–154, 2003.

[9] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in CVPR, 2010,
pp. 2544–2550.

[10] D. S. Bolme, B. A. Draper, and J. R. Beveridge, “Average of
synthetic exact filters,” in CVPR, 2009.

[11] Y. Wu, J. Lim, and M. H. Yang, “Online object tracking: A bench-
mark,” in CVPR, 2013.

[12] S. Avidan, “Support vector tracking,” TPAMI, 2004.
[13] H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised on-line

boosting for robust tracking,” in ECCV, 2008.
[14] Y. Wu, B. Shen, and H. Ling, “Online robust image alignment via

iterative convex optimization,” in CVPR, 2012.
[15] L. Sevilla-Lara and E. Learned-Miller, “Distribution fields for

tracking,” in CVPR, 2012.
[16] C. Lampert, M. Blaschko, and T. Hofmann, “Beyond sliding

windows: Object localization by efficient subwindow search,” in
CVPR, 2008.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Location error threshold

P
re

c
is

io
n

Out−of−plane rotation (39 sequences)

KCF on HOG [0.729]

DCF on HOG [0.712]

Struck [0.597]

TLD [0.596]

KCF on raw pixels [0.541]

ORIA [0.493]

MIL [0.466]

DCF on raw pixels [0.428]

CT [0.394]

MOSSE [0.390]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

c
is

io
n

Fast motion (17 sequences)

Struck [0.604]

KCF on HOG [0.602]

DCF on HOG [0.559]

TLD [0.551]

KCF on raw pixels [0.441]

MIL [0.396]

CT [0.323]

DCF on raw pixels [0.275]

ORIA [0.274]

MOSSE [0.213]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

c
is

io
n

Illumination variation (25 sequences)

KCF on HOG [0.711]

DCF on HOG [0.699]

Struck [0.558]

TLD [0.537]

KCF on raw pixels [0.448]

ORIA [0.421]

MOSSE [0.375]

CT [0.359]

MIL [0.349]

DCF on raw pixels [0.309]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

c
is

io
n

Scale variation (28 sequences)

KCF on HOG [0.679]

DCF on HOG [0.654]

Struck [0.639]

TLD [0.606]

KCF on raw pixels [0.492]

MIL [0.471]

CT [0.448]

ORIA [0.445]

DCF on raw pixels [0.426]

MOSSE [0.387]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Location error threshold

P
re

c
is

io
n

Motion blur (12 sequences)

KCF on HOG [0.650]

DCF on HOG [0.588]

Struck [0.551]

TLD [0.518]

KCF on raw pixels [0.394]

MIL [0.357]

CT [0.306]

DCF on raw pixels [0.270]

MOSSE [0.244]

ORIA [0.234]

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Location error threshold

P
re

c
is

io
n

Low resolution (4 sequences)

Struck [0.545]

KCF on raw pixels [0.396]

DCF on raw pixels [0.396]

KCF on HOG [0.381]

DCF on HOG [0.354]

TLD [0.349]

MOSSE [0.239]

ORIA [0.195]

MIL [0.171]

CT [0.152]

Figure 7: Precision plots for 6 attributes of the dataset. Best viewed in color. In-plane rotation was left out due to space constraints.
Its results are virtually identical to those for out-of-plane rotation (above), since they share almost the same set of sequences.

[17] B. Alexe, V. Petrescu, and V. Ferrari, “Exploiting spatial overlap
to efficiently compute appearance distances between image win-
dows,” in NIPS, 2011.

[18] H. Harzallah, F. Jurie, and C. Schmid, “Combining efficient object
localization and image classification,” in ICCV, 2009.

[19] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman, “Multiple
kernels for object detection,” in ICCV, 2009.

[20] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based mod-
els,” TPAMI, 2010.

[21] R. C. González and R. E. Woods, Digital image processing. Prentice
Hall, 2008.

[22] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast feature
pyramids for object detection,” TPAMI, 2014.

[23] B. Schölkopf and A. Smola, Learning with kernels: Support vector
machines, regularization, optimization, and beyond. MIT Press, 2002.

[24] D. Casasent and R. Patnaik, “Analysis of kernel distortion-
invariant filters,” in Proceedings of SPIE, vol. 6764, 2007, p. 1.

[25] R. Patnaik and D. Casasent, “Fast FFT-based distortion-invariant
kernel filters for general object recognition,” in Proceedings of SPIE,
vol. 7252, 2009, p. 1.

[26] K.-H. Jeong, P. P. Pokharel, J.-W. Xu, S. Han, and J. Principe, “Ker-
nel based synthetic discriminant function for object recognition,”
in ICASSP, 2006.

[27] C. Xie, M. Savvides, and B. Vijaya-Kumar, “Kernel correlation
filter based redundant class-dependence feature analysis (KCFA)
on FRGC2.0 data,” in Analysis and Modelling of Faces and Gestures,
2005.

[28] A. Mahalanobis, B. Kumar, and D. Casasent, “Minimum average
correlation energy filters,” Applied Optics, 1987.

[29] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting
the circulant structure of tracking-by-detection with kernels,” in
ECCV, 2012.

[30] J. Revaud, M. Douze, S. Cordelia, and H. Jégou, “Event retrieval
in large video collections with circulant temporal encoding,” in
CVPR, 2013.

[31] J. F. Henriques, J. Carreira, R. Caseiro, and J. Batista, “Beyond hard
negative mining: Efficient detector learning via block-circulant
decomposition,” in ICCV, 2013.

[32] H. K. Galoogahi, T. Sim, and S. Lucey, “Multi-channel correlation
filters,” in ICCV, 2013.

[33] V. N. Boddeti, T. Kanade, and B. V. Kumar, “Correlation filters for
object alignment,” in CVPR, 2013.

[34] R. M. Gray, Toeplitz and Circulant Matrices: A Review. Now
Publishers, 2006.

[35] P. J. Davis, Circulant matrices. American Mathematical Soc., 1994.
[36] A. Vedaldi and A. Zisserman, “Efficient additive kernels via ex-

plicit feature maps,” TPAMI, 2011.

João F. Henriques received his M.Sc. degree
in Electrical Engineering from the University of
Coimbra, Portugal in 2009. He is currently a
Ph.D. student at the Institute of Systems and
Robotics, University of Coimbra. His current re-
search interests include Fourier analysis and
machine learning algorithms in general, with
computer vision applications in detection and
tracking.

Rui Caseiro received the B.Sc. degree in electrical engineering (spe-
cialization in automation) from the University of Coimbra, Coimbra,
Portugal, in 2005. Since 2007, he has been involved in several research
projects, which include the European project “Perception on Purpose”
and the National project “Brisa-ITraffic”. He is currently a Ph.D. student
and researcher with the Institute of Systems and Robotics and the
Department of Electrical and Computer Engineering, Faculty of Science
and Technology, University of Coimbra. His current research interests
include the interplay of differential geometry with computer vision and
pattern recognition.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

Pedro Martins received both his M.Sc. and
Ph.D. degrees in Electrical Engineering from
the University of Coimbra, Portugal in 2008 and
2012, respectively. Currently, he is a Postdoc-
toral researcher at the Institute of Systems and
Robotics (ISR) in the University of Coimbra, Por-
tugal. His main research interests include non-
rigid image alignment, face tracking and facial
expression recognition.

Prof. Jorge Batista received the M.Sc. and
Ph.D. degree in Electrical Engineering from the
University of Coimbra in 1992 and 1999, re-
spectively. He joins the Department of Electri-
cal Engineering and Computers, University of
Coimbra, Coimbra, Portugal, in 1987 as a re-
search assistant where he is currently an As-
sociate Professor. Prof. Jorge Batista was the
Head of the Department of Electrical Engineer-
ing and Computer from the Faculty of Science
and Technology of University of Coimbra from

November 2011 until November 2013 and is a founding member of
the Institute of Systems and Robotics (ISR) in Coimbra, where he is
a Senior Researcher. His research interest focus on a wide range of
computer vision and pattern analysis related issues, including real-time
vision, video surveillance, video analysis, non-rigid modeling and facial
analysis. More recently his research activity also focus on the interplay
of Differential Geometry in computer vision and pattern recognition prob-
lems. He has been involved in several national and European research
projects, several of them as PI at UC.

	1 Introduction
	2 Related work
	2.1 On tracking-by-detection
	2.2 On sample translations and correlation filtering
	2.3 Subsequent work

	3 Contributions
	4 Building blocks
	4.1 Linear regression
	4.2 Cyclic shifts
	4.3 Circulant matrices
	4.4 Putting it all together
	4.5 Relationship to correlation filters

	5 Non-linear regression
	5.1 Kernel trick – brief overview
	5.2 Fast kernel regression
	5.3 Fast detection

	6 Fast kernel correlation
	6.1 Dot-product and polynomial kernels
	6.2 Radial Basis Function and Gaussian kernels
	6.3 Other kernels

	7 Multiple channels
	7.1 General case
	7.2 Linear kernel

	8 Experiments
	8.1 Tracking pipeline
	8.2 Evaluation
	8.3 Experiments on the full dataset
	8.4 Experiments with sequence attributes

	9 Conclusions and future work
	Appendix A:
	A.1 Implementation details
	A.2 Proof of Theorem ??
	A.3 Kernel Ridge Regression with Circulant data
	A.4 Derivation of fast detection formula
	A.5 Linear Ridge Regression with Circulant data
	A.6 MOSSE filter

	References
	Biographies
	João F. Henriques
	Rui Caseiro
	Pedro Martins
	Prof. Jorge Batista

